

A Form-making Algorithm
Shape Grammar Reversed

Park, Hyoung-June and Emmanuel-George Vakaló
University of Michigan

Key words: CAAD, Design Research, Design Languages, Design Process Model, and
Internet

Abstract: Under the assumption that design is a hypothetical test of building, this paper
introduces a method of employing architectural knowledge through direct
manipulation of geometric objects. Proposing a framework for retrieving and
analysing not only what is modelled but also how it is designed, this paper
demonstrates that designing can be viewed as an object of research. The paper
also discusses the issues pertaining to the implementation of the
aforementioned framework.

1. INTRODUCTION

Based upon the possibilities of exploring spatial design with Froebel’s
gifts, Stiny, in his article "Kindergarten Grammar," (Stiny, 1980) develops a
visual grammar to formalise a vocabulary of building elements and a system
of categories of forms in languages of designs. The languages are formed by
combining or augmenting other languages of designs in terms of various
language-theoretic operations such as substitution (addition and deletion,)
Boolean operations (union, intersection, difference) and basic transformation
functions (translation, rotation, mirroring, and scaling.) Stiny shows possible
techniques of identifying a spatial relation in his grammar.

 After this, a number of efforts have been made in making an
application of a three-dimensional shape grammar. Piazzalunga and Fitzhorn
sketch a possible way of recognising a three-dimensional shape grammar,
and a framework of the shape grammar application (Piazzalunga and
Fitzhorn, 1998). Agarwal, Cagan, and Constantine suggest the idea of
optimising production system according to the feedback about each separate

454 CAAD Futures 2001

stage of designing (Agarwal, Cagan, et al., 1998). Nevertheless, the use of
shape grammar still has been difficult for a student and a designer who are
more familiar with manipulating formal objects than with making a rule and
applying the rule to design. It is because a rule application algorithm in
shape grammar generates a low degree of freedom in design with imposing a
generating a rule itself as a constraint of design.

With the review of the current rule application algorithm in shape
grammar, this paper introduces an algorithm of form making based upon
designer's direct manipulation of objects as a possible solution to the rule-
generating problem embedded in current shape grammar application.
According to this form-making algorithm, a framework of computational
application is proposed in this paper.

The framework has three theoretical buttresses for its implementation.
The first buttress entails formalisation that translates a designer’s form-
making process into a set of "form-making rules."1 The second involves data
abstraction that stores the design algorithm, which is generated during
design process, into a database in the format of the "Extensible Mark-up
Language (XML)" (Maruyama, Tamura, et al., 1999). This form-making
information is stored when a designer derives a new design object with
spatial relations between different objects. During this storing process,
"Object-Relational Database Management System (ORDBMS)" (Soutou,
2000) is employed for maximising the ability of querying and accessing
design knowledge in database. The design knowledge consists of the
annotations of each design object and the relation between different design
objects. The third entails communication that applies each stored
information to design. The stored information inside the database is
exchanged throughout the Internet.

The framework proposed in the paper allows a designer to manage each
design object in three different types of information such as "Artifact,"2
"Building Information,"3 and "Design Algorithm."4 Three different types of
design information embedded in a design object allow the designer to
analyse and modify various aspects of his or her design. Now, an individual
way of designing, tacit knowledge, becomes an object of play.

1 The form-making rules consist of basic transformation functions (translation, rotation,

mirroring, and scaling), spatial relations, which are addition, deletion, and Boolean
operations (union, difference, and intersection), and spatial elements such as points, lines,
planes, and solids.

2 A visualised geometric representation of a design object
3 An architecturally categorised information of constructing a design object
4 A set of form-making rules (schemas) established by a designer's direct manipulation of a

design object

A Form-making Algorithm 455

2. A SHAPE GRAMMAR

As defined by Stiny, a shape grammar is a four-tuple (S, L, R, I), in
which (1) S is a finite set of shapes; (2) L is a finite set of symbols; (3) R is
a finite set of shape rules; (4) I is an initial shape. Design solutions defined
by a shape grammar are generated by applying the shape rules in the set R to
the initial shape I and to shapes produced from I. In specific, the set of
sequentially ordered rules for making a design solution is "schema." A shape
rule in the set R has a normal form A B, where A and B are labelled
shapes in (S, L)+ 5and (S, L)* 6, respectively. In this paper, all shapes are
regarded as solids in space, which are shapes in U33. Stiny defines the
algorithm of shape rule application in his article "Shape Rules: closure,
continuity, and emergence" (Stiny, 1994) as follows;

If you have a rule for your design developing A B
Apply your rule to a shape C
if a transformation of A is a subset of C T(A) ⊆⊆⊆⊆ C
Delete a transformation of A from C, and add a transformation of B (C - T(A)) + T(B)
Then, you will have a new shape C' form C with a rule A B C'

This algorithm has been employed as a method for analysing
architectural precedents. Several grammars such as "Palladian Grammar
(Stiny and Mitchell, 1978)," "The Grammar of Paradise (Stiny and Mitchell,
1981), " "The Language of Prairie: Frank Lloyd Wright's Prairie Houses
(Koning and Eizenberg, 1981)" showed the possibility of using shape
grammar in the research of traditional buildings. However, the burden of
generating a rule to apply the rule itself to design has limited the usage of
shape grammar in design practice.

Without a certain rule or intention of developing a design process, the
current algorithm of shape grammar cannot proceed any further design step
as illustrated above. In addition, another problematic point is that most
designers do not have a rule or solution to every design problem. It leads a
designer to manipulate shapes for finding or generating a rule. The current
algorithm does not sufficiently explain a connection between designer's
manipulation and generating a rule in shape grammar. In addition, the
current algorithm does not clearly explain how to introduce the interpretation
of the semantic part of architectural design although it effectively represents
the syntax of the design. Comparing to shape grammar explained by Stiny,
Chomsky's generative grammar (Chomsky, 1978) consists of the basic

5 (S,L)+ is a set which contains all labelled shapes made up of shapes and symbols in the set S

and L
6 (S, L)* is a set which contains (S,L)+ and the empty labelled shape <S∅ , ∅>

456 CAAD Futures 2001

components, which are lexicon and rewriting rules. Lexicon represents a list
of words. It shows that the generative grammar concerns a meaningful
language, which is composed of words. However, Stiny's shape grammar
represents a world with geometric elements, which may be compared to
letters or alphabets instead of words that have meanings. Therefore, without
an introduction of meaning embedded in design object, a shape grammar
may produce an ambiguity in terms of confusion not creativity.

3. A FORM-MAKING ALGORITHM

The importance of direct manipulation of object in design process has
been acknowledged among architects and designers since Frank Lloyd
Wright stated, in his biography, the influence of playing Froebel's gifts in
kindergarten method on his design. Also, it is highlighted by a few American
pragmatists such as Pierce and Dewey. Dewey describes a pattern of design
action in inquiry as “the controlled or directed transformation” (Dewey,
1986). Pierce suggests that the habits of purposeful actions are the rules or
patterns of solving problems in the process of inquiry (Pierce, 1966).

With the hypothesis that direct manipulation of object can be the rules of
making a transient progress of design or inquiry, an algorithm for translating
the manipulation into a rule during the design process is proposed below.

When you have a shape A to be developed A
Make a transformation of a shape αααα T(αααα)
such that α α α α ∈ { ∅ , …, A, …, *}
Then, define a spatial relation ⊗ between A and T(αααα) A ⊗ T(αααα)
such that ⊗ ∈ { addition, deletion, union, difference, intersection}
Whenever you get B such that B = A ⊗ T(αααα)
The relation between A and B is stored as a rule A B

Where A, B, and α α α α are in U33 (Solids in Space) Also, the addition is Ø + α and the
deletion is β - α = Ø such that Ø is empty shape and β ⊆ α where α and β in U33.

With the suggested algorithm, a designer can focus on his/her design
without the burden of shape rule making. Whenever a design solution is
achieved through substitution or Boolean operation between an initial shape
and a transformed shape, the relation between the initial shape and the
solution is stored as a rule in a machine. At each cycle of this algorithm, a
designer is able to attach an architectural meaning to each solution. This
process provides a mapping of designer's meaning to a rule in shape
grammar. The mapping leads a designer to apply the stored rules for solving
other design problems. At the end of design process, the whole series of

A Form-making Algorithm 457

shape rules of a final design object are organised with proper meaning
attached in a machine. This architectural reference mapped to a final design
object allows a designer to change the part of his/her final design result not
only modifying a shape/ design object but also alternating the rule assigned
to the shape/ design object. Thus, a syntactic intervention of design process
is possibly achieved with modifying the rules generated by designer's direct
manipulation of shapes during design process.

4. MAKING AN ARCHITECTURAL REFERENCE

Based upon the proposed algorithm, a tool for making an architectural
reference is introduced. The tool employs the notion of "object" 7 and
suggests a way of understanding design as a process of making "a
meaningful order" (Papanek, 1984) and a set of building information
annotated to a designed shape in U33, a solid in space.

The proposed tool regards all the components used to generate a design
as a set of objects, which are organised in sequence of design resolution. The
basic structure of object consists of state and behaviour. State contains
geometric entities as attributes of object. Behaviour has basic transformation
functions. In addition, the spatial relation between different shapes in U33
defines a step, which generates a new shape. The relation includes addition,
deletion, and Boolean Operations. A step object, which is the design
resolution, clarifies schema known as series of rules. Then, each step object
is embedded as one of attributes of the building information of a new shape.
The new shape is represented in two different aspects. The first aspect is the
shape as an object containing geometric information. The second is as an
object in the spatial relation with other objects. Therefore, with this
architectural reference, a user of this tool will get geometric data of a
designed shape and his/her design algorithm of deriving the shape.

4.1 Formalisation

Formalisation allows a user of this tool to define shapes in U33 as objects.
When the user makes addition or deletion of a shape with instantiating
prototypes or using previously defined the shape, the tool creates an object.
The attributes of the object, which are geometric entities, are established
either by the user or defined as default value initially by the tool. Either the
tool or the designer gives corresponding label or name to the object.

7 An object always has two characteristics: state and behaviour. For example, Bicycles have

state (current gear, current pedal cadence, two wheels, number of gears) and behaviour
(braking, accelerating, slowing down, changing gears)

458 CAAD Futures 2001

However, only the tool defines the identity number of the object. In addition,
the behaviour (basic transformation functions) of the object is defined by the
user's direct manipulation of the shape and organised by the tool. Also, the
user creates a new shape by making a spatial relation between different
shapes. This process is recorded as a step object. The created objects are also
stored as instances for the future usage.

prototype instances

instantiation

Manipulation

interpretation

Object id “t”

<Behavior>

<State >

<Transformation>

<Geometric entitiy>

<Name> </Name>shape B

<Translation> </Translation>TransMetrics

<Mirroring> </Mirroring>MirrorMetrics
<Rotation> </Rotation>RotateMetrics

<Scaling> </Scaling>ScaleMetrics
</Transformation>
</Behavior>

<Points>

<Lines>
<Planes>
<Solids>

<Point id “1”>
</Point id “1”>

<X> </X> <Y> </Y> <Z> </Z>
</Points>

</Planes>
</Lines>

</Solids>

......

......
......

</Geometric entitiy>
</State >

parse

Manipulation

Step id “3”

<Relation>
<FromObject >

<ToObject >

<Object id “s” >

</Object id “t” >

</Relation>UNION

</Object id “s” >...
</FromObject >

<Object id “t” > ...
</ToObject >

Object id “s”

<Behavior>

<State >

<Transformation>

<Geometric entitiy>

<Name> </Name>shape A

<Translation> </Translation>TransMetrics

<Mirroring> </Mirroring>MirrorMetrics
<Rotation> </Rotation>RotateMetrics

<Scaling> </Scaling>ScaleMetrics
</Transformation>
</Behavior>

<Points>

<Lines>
<Planes>
<Solids>

<Point id “1”>
</Point id “1”>

<X> </X> <Y> </Y> <Z></Z>
</Points>

</Planes>
</Lines>

</Solids>

......

......
......

</Geometric entitiy>
</State >

Figure 1. Formalisation

4.2 Data Abstraction

Data abstraction enables a user of the tool to isolate "how a compound
object is used from the details of how it is constructed from more primitive
objects. " (Abelson and Sussman, 1996) Assuming the tool provides the
basic transformation functions of spatial entities, the instantiated objects can
be assembled with various sets of formal relations defined by the user. The
tool organizes each step of creating another/new object according to the
user’s assembling of shapes in U33. Illustrating steps of the user's design
process as schema, the tool provides an understanding of the evolution of a
shape and a set of rules that generates the shape. Therefore, the sequence of
making a new shape is displayed as a step object, and the transformation of a

A Form-making Algorithm 459

shape is explained as an object in XML format. With the structured design
information, the user of this tool is able to assemble the subset of the shape
not only in constructing a compound shape within a visual state but also in
syntactically modifying the process and transformations of the object. Figure
2 shows the data abstraction layers of the object, step object, and schema.

Design artifact

Step id “3”

<Relation> UNION
<FromObject >

<ToObject >
<Object id “s” >

<Object id “t” >

Object id “t”

<Behavior>

<State >
<Transformation>

<Geometric entitiy>

<Name>

O_Schema
<Step id “1”>
<Step id “2”>

<Step id “n”>

<Step id “3”>
.
.

Design Algorithm

Figure 2. Data Abstraction Layers

XML is a way of structuring information in cross platform. Also, XML is

syntax for establishing the formation of the hierarchical containers, which
include various data type. Therefore, basically an XML document is a tree of
elements in a certain order. Since XML allows a user to define the structure
of each document within document-type definition (DTD), it has the
advantages of describing meta-content, publishing database contents, and
communicating data using a messaging format. With these advantages, XML
provides a possible way to retrieve a design information as the set of
programming codes instead of the format of DXF (Data eXchange File.)
Thus, it helps reducing the size of memory for saving a design information.
Also, XML allows a user to understand design/designing as a procedural
development of structured information with manipulating shapes. The
structured information is managed in ORDBMS. ORDBMS is employed for
managing the storage of an organised design information. As an extension of
Relation Database system (RDBMS) for affording Object-Oriented design
concept, ORDBMS provides user-defined types including data structures,
collection, encapsulation, inheritance, and Object Identity. Collections are a
means of storing a series of data entries as a group. Encapsulation implies
that data abstraction and data hiding. It also provides the hierarchy between
data objects. Inheritance implies that a child of father data object can have
the characters of the father object. With these features, ORDBMS allows the
designer to perform complex analytical and data manipulation for searching

460 CAAD Futures 2001

and retrieving various objects. Comparing to Object-Oriented Database
System, ORDBMS provides frequent querying / updating access to large
collection of data. (Ramakrishnan, 1998) In this proposed tool, this factor is
vital since a design information is supposed to be generated whenever a new
shape is created from a designer's manipulation. Figure 3 illustrates the data
model of each information object managed in Oracle Designer 6.

Figure 3. Data Model

4.3 Communication

To apply the proposed architectural reference within ORDBMS,
establishing a network of communication is critical. It is necessary for
facilitating, through the web-browser, the exchange of encapsulated
information in the database with other architectural references. With the
exchange, feedback and error-elimination are requested to the user of this
proposed tool. According to the result of communication, the user can
change the state and composition of shapes by altering the object, step object
and building information parsed inside the database.

A Form-making Algorithm 461

Playing panel

Grammar

Annotator

Programming Code

Schema

U ADD DEL

Advisor

Designer

Web Browser : Front End

RMI

Server
Side
Applet

Interpreter

Parser DOM

DATA MANAGEMENT

Library: Middle End Web Server Object-Relational Database
: Back End

JAVA Virtual Machine

XML SOURCE

Data Object

Server Query Language (SQL)

Data Object

Archive

Figure 4. Communication Network

Initially Archive in the front end contains sets of prototype shapes as

objects. The sets of prototype instances are pre-defined. However, in
Archive, the number of objects and step objects increases when a new shape
is constructed in Designer interface. According to changes occurred either in
Designer or in Grammar, Interpreter in the middle end translates the
shape constructed by the user into object and step object in the format of
XML. In return, Interpreter illustrates the parsed object on the Archive
panel in Designer, and design developing procedures on the Schema panel
in Grammar. The components of the tool are illustrated in Figure 5.

The interpreted shape in XML is the subset of an object that makes up a
final shape. It leads the user to find out how his or her final shape consists of
sets of individual shapes. Also, Interpreter in the middle end converts each
command of search conducted in Annotator to Server Query Language
(SQL) for proper function of ORDBMS. In addition, Interpreter re-
organises the parsed step object in LSP format as a programming code. In
return, the programming code itself is appeared on the code panel in
Grammar. The final shape is divided into objects and step objects in the
format of XML during a user's design developing. With the help of network
communication based upon "Remote Method Invocation (RMI) and Server
Side Applet (SERVLET)," (Reese, 1997) the user is able to employ the basic
transformation functions and spatial relations, which are transferred to the
database in the back end server, in Designer or Grammar.

4.4 Implementation

4.4.1 Components

The components of the tool for making an architectural reference are
Designer, Grammar, Annotator, Archive, and Advisor.

462 CAAD Futures 2001

Archive

Grammar

AnnotatorProgramming Code

Schema

Advisor

Designer U ADD DEL

Playing panel

 object id "1"
 {
 command
 Behavior : translation, rotation, mirroring, and scaling
 {
 States: geometrical entities
 }
 }

Attention Needed!

Check the highlighted
object. It has a
structural confict
with object id “t”

Please, look up the
step id “23”

Attach your information
to the hightlighted
object

ENTER

Figure 5. Use-Interface

Designer gives a user of this tool several options for developing his/her

design such as basic transformations, substitution, and Boolean operations.
Also, Designer visualises design shapes in U33 according to the user's direct
manipulation of the shapes. In Grammar, the user is able to perform a
syntactical intervention of design process by modifying a design algorithm,
which is generated from Designer. The intervention is made with changing
contents in Programming Code or altering the sequence of the evolution of
shapes in Schema. Also, the intervention made in Grammar effects the
state of a shape represented in Designer. With Annotator, the user can
attach a building information to each shape according to his/her need. In
addition, Annotator helps the user search and update the instances in
Archive. The search and update method leads the user to make a systematic
comparison. During design process, the category, type, function and
constructional information of each shape are organised as the contents of a
data object named "O_Artifact" in a database. It allows user to study his/her
design with adequate information. In Advisor panel, possible problems
embedded in each shape are displayed based upon the exchange of design
information among different architectural references.

A Form-making Algorithm 463

4.4.2 From Shape to Object

When a user selects and transforms a certain shape, a temporary memory
is cached for storing the state of the selected shape. Comparing the state and
the changed state, the transformation used for the changes is specified: A =
B * T, then B

-1 * A = T where A is a 4 x 4 matrix of the selected shape. B is
a 4 x 4 matrix of an altered shape. B

-1 is an inverse matrix of B. T is the basic
transformation function matrix (Translation, Rotation, Mirroring, or
Scaling). The initial states of shapes are already known since the user is
supposed to begin his/her design with instantiating prototypes contained in
Archive panel of Designer, which is in front end. According to information
of the states and behavior of a shape, Interpreter in the middle end writes
an object as a description of the shape in XML format.

4.4.3 From Object to Step Object

A step object is specified only when a user makes a new shape by
defining a spatial relation between shapes. The spatial relation is defined by
the user's direct manipulation of the shapes. And the identity number of step
object is automatically defined in sequential order only by ORDBMS. The
step object contains FromObjects, ToObjects, and the spatial relation.
Especially, ToObject of addition is always Ø (void)

4.4.4 From Step Object to Programming Code

<Step id ="3">
<Relation>add/delete,Boolean operation </Relation>

< FromObject >
<Object id ="1">

<Name></Name>
<Behavior> Transformation</Behavior>
<State>geometrical entities</State>

</Object>
</ FromObject >
<ToObject >

<Object id ="2">
<Name></Name>
<Behavior> Transformation</Behavior>
<State>geometrical entities</State>

</Object>
</ ToObject >

</Step>

{Step3
command
{

Retaion : addition/deletion/ Boolean Operation
{

FromObject
{

command
{

object id "1"
{

command
Behavior : translation, rotation, mirroring, and scaling
{

States: geometrical entit ies
}

}
}

ToObject
{

command
{

object id "2"
{

command
Behavior : translation, rotation, mirroring, and scaling
{

States: geometrical entities
}

}
}

}
}

}
}

464 CAAD Futures 2001

5. CONCLUSION

The tool for making an architectural reference has been developed as a
migration of Nine Square Grid Composition (NSGC), which was designed
within AutoCAD environment in AutoLisp and DCL, to a web-based
application in C++ and JAVA programming language. The basic structure of
NSGC is rooted from research on designer work in traditional studio class.8
There are two most polemic points taken from the research. The first is that
rational discussion between designer and instructor about a design is not
possible without records of the form-making process. The second is that the
necessity of an architectural reference for searching, comparing, and
retrieving design artifacts during design process with a computational
application.

With the proposed form-making algorithm focused on a direct
manipulation of design objects and its translation to a rule, a tool for making
an architectural reference shows the possibility of implementing shape
grammar in constructive design practice. By introducing the concept of
Object-Oriented Design, we tried to explain how individual design process
could be programmed in terms of objects and step objects. Without the
burden of understanding a programming language, designers create easily
their own programming of what they design, and investigate their algorithm
of form-making process. Also, providing a way of recording building
information of each design artifact in a database, we suggested the model of
an architectural reference for studying and developing the design artifact.

The further development should regard parametric transformation as one
of basic transformations for affording more flexible design. In addition, for
achieving more sophisticated design result, a way of combining design itself
with information of other design disciplinary areas, which are history,
environment, structure, urban planning and so on, in the data structure is
needed.

6. ACKNOWLEDGEMENTS

In memory of his intellectual excellence and humour, I contribute this
paper to my mentor and friend, the Late Emmanuel-George VakalÓ.

8 http://www-personal.umich.edu/~egvakalo/nsgc/teaching/design.htm

A Form-making Algorithm 465

7. REFERENCES

Abelson and Sussman, 1996, Structure and Interpretation of Programs, The MIT press,
Cambridge, Massachusetts, p. 79-93.

Agarwal, M., Cagan, J & Constantine, K.G.,1998, "Influencing Generative Design Through
Continuous Evaluation: Associating Costs with the Coffeemaker Shape Grammar"
Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM)
Vol. 13 Number 4, p. 253-275.

Alexander, C., 1967, Notes on the Synthesis of Form. , Harvard University Press, Cambridge,
Massachusetts.

Chen, K and Owen ,C. , 1997, "Form Language and Style Description", Design Studies 18,
Elsevier Science Ltd, Great Britain, p.249-274.

Chomsky, N., 1978, Syntactic structures, The Hague : Mouton.
Dewey, J. , 1986, Logic-The Theory of Inquiry: Volume12, The Later Works of John Dewey,

1925-1953. , Southern Illinois University Press , Carbondale.
Koning, H. and Eizenberg. , 1981, "The Language of the Prairie: Frank Lloyd Wright's

Prairie Houses ", Environment and Planning B: Planning and Design, Vol.8, p. 295-323.
Lulushi, A., 1998, Inside Oracle Designer/ 2000, Prentice Hall, Inc., New Jersey.
Maruyama, H., Tamura, K and Uramoto, N. , 1999, XML and JAVA, Addison- Wesley

Longman Inc. , Massachusetts, p. 14-30.
Mitchell, W.J. , 1989, The Logic of Architecture, MIT press, Cambridge, Massachusetts.
Papanek, V., 1984, Design for the Real World. Van Nostrand Reinhold.
Perry, M , 1998, "Coordinating Joint Design Work: the Role of Communication and

Artefacts", Design Studies 19, Elsevier Science Ltd, Great Britain, p. 273-288.
Piazzalunga, U. and Fitzhorn, P. I., 1998, "Note on a Three-dimensional Shape Grammar

Interpreter", Environment and Planning B: Planning and Design Vol25, p. 11-33.
Peirce, C.S. , 1966, "How to Make Our Ideas Clear", in Selected Writings of Charles S.

Peirce(Values in a Universe of Chance), edited by Philip P.W, Dover Publications, New
York.

Ramakrishnan, R. , 1998, Database Management Systems , WCB/McGraw-Hill, INC.
Boston, Massachusetts, p. 614-645.

Reese, G. , 1997, Database Programming With JDBC and JAVA , O'Reilly & Associates,
INC. Cambridge, Massachusetts, p. 139-169.

Soutou, C. , 2000, "Modeling relationships in object-relational database", Data & Knowledge
Engineering, vol. 36, p. 79-107.

Stiny, G. and Gips, J., 1972, "Shape Grammars and the Generative Specification of Painting
and Sculpture" in C V Freiman (Ed) Information Processing 71, Amsterdam, North-
Holland, p. 1460-1465.

Stiny, G. and Mitchell, W.J., 1978, "The Palladian Grammars " , Environment and Planning
B5: Planning and Design Vol1, p. 5-18.

Stiny, G., 1980, "Kindergarten Grammars: Designing With Froebel's Building Gifts" ,
Environment and Planning B: Planning and Design Vol7, p. 409-462.

Stiny, G. and Mitchell, W.J., 1981, "The Grammar of Paradise ", Environment and Planning
B7: Planning and Design Vol2, p. 209-226.

Stiny, G., 1981, "A Note on the Description of Designs ", Environment and Planning B:
Planning and Design Vol8, p. 257-267.

Stiny, G. and March, L. , 1981, "Design Machines", Environment and Planning B:
Planning and Design Vol8, p. 245-255.

Stiny, G., 1992, "Weights", Environment and Planning B: Planning and Design, Vol9,
p. 413-430.

466 CAAD Futures 2001

Stiny, G., 1994, " Shape Rules: closure, continuity, and emergence", Environmental Planning

B: Planning and Design, Vol21, p. 49-78.
Szkman, S , Racz J, Bochenek C, and Sriram, R. D , 2000, "A Web-based System for Design

Artifact modeling", Design Studies 21, Elsevier Science Ltd, Great Britain, p. 145-165.
Waite, M , 1998, Object-Oriented Design in Java, Stephen Gilbert and BillMaCarty Corre

Madera, California.
Yair, K., 1999, "Design Through Making: crafts knowledge as facilitator to collaborative

new product development", Design Studies 20, Elsevier Science Ltd, Great Britain, p. 495-
515.

Zeisel J., 1981, Inquiry by Design, Brooks/Cole Publishing Company, Monterely, California.

