
REFLECTION IN ACTION

An educational indie video game with design schema

ALICE SANDSTROM1 and HYOUNG-JUNE PARK2
1,2University of Hawaii at Manoa
1,2{alice3|hjpark}@hawaii.edu

Abstract. This paper outlines the development of an educational indie
video game in which a set of design rules are generated as a schema from
player actions with the spatial components of architectural precedents in
a given library. Each player’s outcome is scored with its comparison
to the functional sequences of the original precedent and its formal
arrangement. The implementation of the proposed game within UNITY
is introduced.

Keywords. Shape Grammar; Indie Game; Schema; Design Rules;
Scoring.

1. Introduction
Shape grammar is a means of calculating with shapes in order to generate new and
unique designs by applying a set of shape rules, generated based on the spatial
relationships formed and transformations undergone between a set of shapes, to
an initial object (Stiny 1980a, Stiny 2006). This approach to design can also
be used retroactively to analyze precedent architectural styles to understand their
spatial compositions and to create new architectural designs that fall within that
style through the development of specific shape grammars (Duarte 2005, Koning
and Eizenberg 1981, Stiny and Mitchell 1978, Tepavčević and Stojaković 2012).
Shape grammar has also been one of the approaches to design education which
tacit knowledge in architecture is capable of being taught. This form of tacit
knowledge relies on learning in action, which occurs in design through the act
of designing without an awareness of learning contents themselves (Schön 1983).
However, most applications that employ the use of shape grammar require a
user to first create a rule prior to its application within the design. This order
is opposite to how people naturally want to develop and use shape grammar
where user does the designing making playing first and develops the design rules
and their schema based on the analysis of their design actions (Piazzalunga and
Fitzhorn 1998, Tapia 1999, Park and Vakaló 2001, Trescak et al 2010, Grasl and
Economou 2013). The design rule based shape grammar’s usage within the design
process has also made it difficult to develop such a program for use in design
practice. A fair amount of understanding morphological transformation functions
is required before dealing with the generation of and experimentation with shape

Intelligent & Informed, Proceedings of the 24th International Conference of the Association for
Computer-Aided Architectural Design Research in Asia (CAADRIA) 2019, Volume 2, 303-312. © 2019
and published by the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA),
Hong Kong.



304 A. SANDSTROM AND H.J. PARK

grammars in design process (Tepavčević and Stojaković 2012). These issues of
shape grammar’s inaccessibility for beginners limits the number of people who
can learn about and experiment/play with shape grammars. This further limits its
use in the field of both design and design education (Fischer and Herr 2001).

2. Methodology
To solve the problems outlined above we are developing a simple Unity-based
game whose purpose goes beyond entertainment and includes education. Unity is
a game engine by Unity Technology which supports 2D and 3D games across
multiple gaming platforms, including mobile, web, pc, and console, and was
chosen due to its flexibility as a game engine and the online resources available
to us during the development process. We develop a video game as a potential
solution to these problems as they are highly interactive, allowing the user/player
to manipulate virtual 3D objects within the game while having the game analyze
and provide feedback to the player throughout the whole process, in real time. This
real-time analysis allows for the generation of design rules based on a player’s
design activity and their resulting schema to occur while the player is actively
playing with their design rather than requiring them to define the rules and schema
prior to the making of their design. This real-time feedback to players present in
games allows the player to review a score for their design solution, guiding the
player as they play through meaningful feedback (Deterding et al. 2011).

Figure 1. Various Ground Floor Schemas of Martin House within Game.

The proposed game is, at its core, a 3D puzzle game where the player is
guided through a series of levels (also referred to as scenes) each based on a
specific architectural precedent. In each of these levels, the player is provided
a set of puzzle pieces (labeled placeholders), which function as abstractions of a
precedent’s different rooms and/or formal/functional delineations. The players



REFLECTION IN ACTION 305

progress through each level by arranging the puzzle pieces provided to them,
creating their design variations. While the player is going through the process
of arranging these puzzle pieces, the game tracks their process of doing so as a
list of design rules. These lists of design rule are then compiled into an overall
design schema list of that considers where and when a player changes their course
of action by undoing previous decisions they had made, see Figure 1 for a visual
representation of this idea.

Figure 2. Original Arrangement & Functional Diagram for Martin House.

Our proposed game contains a library of architectural precedents ranging in
building typology, style, time period, etc. which the player will be able to tacitly
learn about as they progress through the game. These precedents serve as the
basis for a puzzle given to the player in each game level. They determine the set
of puzzle pieces and labels (space functions) the player is provided with at the start
of the level, as well as serve as the basis for scoring the player after they solve the
levels’ puzzle, providing them meaningful feedback on the actions and choices
they make. One of the initial puzzle levels currently being developed for testing
is inspired by a paper written by Koning and Eizenberg titled ”The Language of
the Prairie: Frank Lloyd Wright’s Prairie Houses” where they detail a parametric
shape grammar which can be used to generate a design within the style of Frank
Lloyd Wright’s Prairie Homes.

Figure 3. Abstracted layout of Martin House and its 3D placeholders .



306 A. SANDSTROM AND H.J. PARK

Puzzle pieces are derived from the abstraction of a precedent’s spatial and
functional layout, and act as placeholders for architectural elements. There are
four main categories of puzzle piece shapes used in our game: basic, which are
simple cuboids; compound, which are comprised of a series of basic geometric
forms which act as the components; unique, which consist of non-cuboid forms;
and unique compound, which are identical to compound shapes but are comprised
of both basic geometric forms and unique forms. These four types where the
result of a series iterative abstractions for precedents selected for the games initial
prototyping. The following shows the placeholders from an abstract layout of a
selected precedent.

Alongside the abstraction of the formal aspects of a precedent design, the
connections between the different functions assigned to each abstracted shape
are articulated. These functional sequences are compared against the original
precedent’s functional connects which serve as the basis for the functional scoring
criteria. The scoring criteria provide the player a guideline for designing with
meaningful syntax while providing the player with the level of design freedom
when assembling a solution to each puzzle given to them.

3. Gameplay
Our game serves two purposes: one at the player level and one at the
researcher/developer level, both looking at different key motivational factors. At
the player level, the game serves as an educational tool for the player to study and
learn about architectural precedent styles and their vocabulary and design rules
in order to obtain tacit knowledge of their design. A player’s motivation within
the game would vary from one player to another, much like in all games. This
variation in player motivation affects how different players would approach the
puzzles we give to them. For example, while one player might care more about
obtaining a high score at the end of each level, seeking to create solutions which
perfectly match the original precedent another player might care more about the
freedom in form making. At the researcher/developer level, the game serves as a
tool for larger scale data collection on the player’s step-by-step process and their
subsequent design schema developed as they move through the various precedent
levels (Park and Vakaló 2001).

Figure 4. Game Overview Flowchart.



REFLECTION IN ACTION 307

At the start of each level, the player is provided with a set of labeled puzzle
pieces (game objects assigned a room function). The player then goes through an
iterative process of object instantiation and manipulation, and connection using
said puzzle pieces. Implementation refers to the initial placement of a game object
in the active scene. Manipulation refers to the basic transformation of a game
object within the scene (translation, rotation). Connection refers to the designation
of two adjacent game objects as being ‘connected’, i.e. that a person could move
between the two rooms. These three action types, in addition to other types
of actions involved in the exploration of design schema and the recreation of a
player’s prior puzzle solutions, form the action-cycle of our game. At the end
of each cycle, the actions taken by the player are compared against the original
precedent’s solution to score the player’s most recent actions in addition to saving
said actions as a design rule, which are then added to a list of design rules that
form a design schema.

Figure 5. Action Cycle Overview.

Currently, we are looking at scoring in terms of the player’s outcome’s
accuracy in terms of two different aspects of design: 1) overall design - how closely
does their outcome match up with the original precedent’s formal arrangement?
and, 2) functional relationships - how closely does the player’s connections
between different room functions match to the originals? Not every player is
going to prioritize obtaining a perfect score, caring more about the freedom of
form-making. The ability for players to create design variations becomes an
important part of setting up each scene. The elements of a precedent’s abstraction
will affect how easily a player will be able to create a variation which makes
sense using the set of objects provided to them. The process of generating design
alternatives by the player is saved as a design schema which is a morphological
sequence in the process.



308 A. SANDSTROM AND H.J. PARK

Figure 6. Generation of Design Alternatives.

One of the key issues that came up early in the development process was
the question of what information is the player provided with at the start of each
level? There are three types of information that are currently being explored
in their potential for implementation in future development: 1) information
embedded within the objects themselves, providing the player with not just the
room geometry, but its respective function name; 2) images and information about
the precedent given to the player just prior to the start of the level, but not accessible
within the level itself (isometric drawings, building pictures, etc.); 3) information
contained within the scene which could help guide players if they get lost or do
not know where to start. The last type of information will convey the overall flow
through the precedent spaces and provide basic functional organization between
public, private, and service spaces.

The player controls are most directly tied to a player’s ability to instantiate
game objects within the scene, and manipulate properties and values assigned
to each game object. Instantiation is done through the instantiate method native
to Unity. Manipulation of the game object includes the translation and rotation



REFLECTION IN ACTION 309

of the said object. Currently, translation and rotation are done through the
adjustment of said object’s transform component which is responsible for defining
the position, rotation, and scale of the game object within the active scene
(the current level) based upon a set of constraints (i.e. corner-to-corner object
snapping). Corner-to-corner snapping is exactly what it sounds like. The player
can adjust a selected object’s position by aligning one of its corners with the corner
of another object within the scene. Connection is done through the detection of
touching surfaces and player input on which game objects whose surfaces touch,
should the game consider “connected”.

Figure 7. Manipulation: Snapping.

Figure 8. Connection.

There are several outcomes on the player’s side of our proposed game. The
most immediate two relate directly to two of the core player motivations looked at
earlier in this paper: scoring and design variations. Another potential outcome
relates to the idea of form as a placeholder. The game objects that constitute
the puzzle are generated, on the game development side, through an abstraction
process whereby architectural details were removed. These game objects could
go through the opposite process on the player’s end: applying architectural details
to the puzzle pieces after the player has arranged them in a way they see fit.
In this way more and more of the meaning behind the puzzle pieces and their
arrangements could be unveiled to the player. Similar to the exploration of
gameplay difficulty options, the potential for the later application of architectural



310 A. SANDSTROM AND H.J. PARK

elements to a player’s puzzle solution has not been implemented within our game
but is being explored for its potential implementation in future development.

4. Implementation

Figure 9. Screenshot of User Interface .

Instantiation is done using the Intantiate method native to the Unity game engine.
When the Intantiate method is called, an instance of a prefab game object located
within the game files is instantiated at a designated position (Vector3) and rotation
(Quaternion) within the currently active scene.

Manipulation is done in Unity by changing the transform component of the
game object using the dot operator (transform.position and transform.rotation).
The specific constraints placed on each game object’s potential positions are done
through a series of trigger colliders attached to specific corners of each game object,
resulting in the desired corner-to-corner snapping.

Connection is done using various trigger colliders that are attached to the
surfaces of each game object that tell the game when two game objects come into
contact. The game then conveys this information to the player in the connection
stage, at which point a player clicks on the game objects they wish to connect to
the piece they just placed (manipulated). Lists of which game objects the player
as designated as “connected.”

Design rules are saved every time a player completes an action-cycle. The
game does this by saving a series of variables into a list. These variables are
assigned based off of the puzzle piece instantiated in the most recent action-cycle
(referred to as the current puzzle piece): information specific to both the prefab
puzzle piece game object as well as its specific instance within the scene (like
its function, shape, and id number specific to each individual game object); the



REFLECTION IN ACTION 311

position and rotation of the current puzzle piece within the game world space; and
a list of puzzle piece game objects that where connected to the current puzzle piece
(the one instantiated this action cycle).

Design Schema refers to the list of player’s generated design rules that are
structured in such a way that they show the path the player took to arrive at their
solution. The design schema shows not only the choices the player chooses to
keep but also the ones they discard, i.e. where they backtracked. This list is
continuously updated during gameplay which each new design rule.

Scoring looks at the variables saved to the design rules and it compares them
to predefined lists based on the formal and functional properties of the precedent
the current game level’s puzzle is based on.

Library refers to the set of scenes which contain each precedent puzzle. These
scenes of an instantiation UI specific to the set of labeled puzzle pieces for the
precedent, the list used for scoring, and any hints specific to the precedent. The
geometric models are imported into Unity by the developer, defined by them
during each scene’s construction. Accordingly, the labels and scoring criteria are
defined per each scene in the library.

5. Discussion
Shape grammar is a rule-based design system in which shape rules are created and
applied based on the spatial relationships formed and transformation undergone
by and between a set of placeholders within a given style. The basic structure of
shape calculation lends itself to computer applications within the field of design,
however, at present this requires making and applying design rule first in the
design process rather than engaging the practice of design. Furthermore, a fairly
high level of understanding morphological transformations necessary for applying
design rules has been problematic for the usage of shape grammar in the process.
These limit shape grammar’s use as both a design tool as well as an educational
tool when it comes to understanding the spatial relationships found within a given
precedent style.

Our proposed game seeks to address the problems and provide an educational
tool for learning about formal and spatial relationships found in a variety of
architectural precedents with translating design actions into design rules and
accumulating those rules as a design schema. The game provides a rigorous way
of producing design variations in the guideline of the meaningful syntax with
maintaining the level of design freedom to assemble given placeholders/objects,
scoring the players’ outcome, providing them feedback based upon the precedent
they are working with, also allow the player to backtrack on a recorded design
schema. The proposed game’s ability to provide immediate player feedback based
on their actions along with their playful nature allows us to a sense of reflection in
action in the design process.

We are currently in the pre-production phase of development, with the goal of
creating an alpha build (an early prototype). This level will be based on the Martin
(Barton) House by Frank Lloyd Wright. This alpha level build will be used to
perform preliminary, small scale player testing in order to determine any further



312 A. SANDSTROM AND H.J. PARK

tweaks to the overall gameplay mechanics prior to the further implementation of
additional precedent levels.

References
Bojan, T. and Stojaković, V.: 2012, Shape grammar in contemporary architectural theory and

design, Facta Universitatis-series: Architecture and Civil Engineering, 10, 69-178.
Deterding, S., Dixon, D., Khaled, R. and Nacke, L.: 2011, From game design elements to

gamefulness: defining “gamification”, Proceedings of the 15th International Academic
MindTrek Conference.

Duarte, J.P.: 2005, Towards the Mass Customization of Housing: The Grammar of Siza’s
Houses at Malagueira, Environment and Planning B: Planning and Design, 32, 347-380.

Fischer, T. and Herr, C.: 2001, Teaching Generative Design, The Proceedings of the Fourth
International Conference on Generative Art 2001.

Grasl, T. and Economou, A.: 2013, From Topologies to Shapes: Parametric Shape Grammars
Implemented by Graphs, Environment and Planning B: Planning and Design, 40, 905-922.

Koning, H. and Eizenberg, J.: 1981, The Language of the Prairie: Frank Lloyd Wright’s Prairie
Houses, Environment and Planning B: Planning and Design, 8, 295-323.

Park, H.-J. and Vakaló, E.-G.: 2001, A Form-making Algorithm. Shape Grammar Reversed,
Proceedings of the Ninth International Conference on Computer Aided Architectural Design
Futures, 453-466.

Piazzalunga, U. and Fitzhorn, P.: 1998, Note on a Three-Dimensional Shape Grammar
Interpreter, Environment and Planning B: Planning and Design, 25, 11-30.

Schön, D.A.: 1983, The Reflective Practitioner : How Professionals Think in Action, New York
: Basic Books.

Stiny, G.: 1978, The Palladian Grammar, Environment and Planning B: Planning and Design,
5, 5-18.

Stiny, G.: 1980a, Introduction to shape and shape grammars, Environment and Planning B:
Planning and Design, 7, 343-351.

Stiny, G.: 1980b, Kindergarten grammars: designing with Froebel, Environment and Planning
B: Planning and Design, 7, 409-462.

Stiny, G.: 2012, Shape : talking about seeing and doing, MIT Press.
Stiny, G. and Mitchell, W.J.: 1978, The Palladian Grammar, Environment and Planning B:

Planning and Design, 5, 5-18.
Tapia, M.: 1999, A visual implementation of a shape grammar system, Environment and

Planning B: Planning and Design, 26, 59-73.
Trescak, T., Esteva, M. and Rodriguez, I.: 2010, Shape grammar interpreter for rectilinear forms,

Proceedings of. 4th Int. Conf. Design Computing and Cognition, Stuttgart.


