
1 23

Nexus Network Journal
Architecture and Mathematics
 
ISSN 1590-5896
 
Nexus Netw J
DOI 10.1007/s00004-016-0328-2

Ratios from the Intersections of 10 + 1
Proportionalities

Hyoung-June Park



1 23

Your article is protected by copyright and all

rights are held exclusively by Kim Williams

Books, Turin. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



RESEARCH

Ratios from the Intersections of 10 + 1
Proportionalities

Hyoung-June Park1

� Kim Williams Books, Turin 2017

Abstract An innovative mathematical analysis comparing sets of preferred ratios

from authors from antiquity (Vitruvius), the Renaissance (Alberti, Serlio and Pal-

ladio), and the modern age (Fechner and Lalo) with the eleven unique and universal

proportionalities sheds new light on architects’ use of certain ratios to endow their

creations with commensurability and beauty. Some ratios may provide more ways

of representing three magnitudes, and this might provide a clue to their enduring

appearance in architectural works.

Keywords Proportion theory � Ratio � Proportionality � Commensurability

Introduction

Ratios have been used as guidelines for designers throughout the centuries as a

means of transforming their geometries. While it is true that different people

recommended and used different ratios, many of these ratios are similar.

A ratio is the relation of one number compared to the other, written as p : q or p/q.

Proportionality, also known as ‘‘mean’’, is the variety achieved by representing

three ordered real numbers (0\ x\ y\ z) and their differences

(z� y; y� x; z� x) with the equalities of the ratios among them. For example,

z� yð Þ= y� xð Þ ¼ y=x or ðz� yÞ : ðy� xÞ ¼ y : x. The equalities of the ratios are

referred to as proportional balance or equilibrium within the three numbers and their

differences. With these equalities, proportionality guarantees ‘‘commensurability’’

among them. ‘‘Mean’’ is commonly used to signify a specific method for finding a
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middle term when there are two extremes such as small and large term. In what

follows, ways of representing the equalities of the ratios among the three ordered

numbers and their differences are defined as ‘‘proportionality’’ (March 1998: 72–77)

rather than ‘‘mean’’ in the modern definition.

This paper provides a mathematical account for preferred ratios and their

relationships with various proportionalities.

Preferred Ratios

Based upon the Pythagorean and Platonic traditions, the treatments of ratio and their

applications to design have been a central concern for intellectuals from the age of

Humanism up until present day (March 1998, 1999; Mitrovic 1990; Fletcher 2001;

Howard and Longair 1982; Heath 1921; Scholfield 1958; Huntley 1970).

It has been noticed by many scholars that several ratios were more frequently

employed when designing rectangular room shapes, and were justified in the name

of beauty (Scholfield 1958; Shin 1996; March 1998). To govern the shape of

atriums, the Roman architect Vitruvius defines three classes of shape: the diagonal

and side of a square,
ffiffiffi

2
p

: 1; a square and a half, 3:2; a square and two-thirds 5:3.

Vitruvius also defines two classes of dining rooms: a double square, 2:1, and a

square, 1:1:

In width and length, atriums are designed according to three classes. The first

is laid out by dividing the length into five parts and giving three parts to the

width; the second, by dividing it into three and assigning two parts to the

width; the third, by using the width to describe a square figure with equal

sides, drawing a diagonal line in this square, and giving the atrium the length

of this diagonal line. … Dining rooms ought to be twice as long as they are

wide … But in the case of exedrae or square oeci… (Vitruvius 1960: 177,

179).

Leon Battista Alberti, who is credited with bringing musical theory and

architectural proportion together, explains that his analogy of musical scales in

architecture are developed from primary ratios like 1:1, 3:4, 2:3, 9:16,1:2, 4:9, 3:8,

1:3, 1:4.

We have dealt with shorter areae, either with equal dimensions or with

proportions of, say, two to three or three to four; and we have dealt with

intermediate areae, where one dimension is twice the other or where the

proportions are, say, four to nine or nine to sixteen. Finally we mentioned

extended areae, with proportions of one to three, one to four, or, say, three to

eight (Alberti 1994: 306).

These ratios are the successive lines of the Pythagorean tetraktys (March 1998).

Sebastiano Serlio provides another set of seven room ratios: the quadrate, 1:1; the

sexquiquarta, 5:4; the sexquitertia, 4:3; the diagonea,
ffiffiffi

2
p

: 1; the sexquialtera, 3:2;

the superbitienstertias, 5:3; and the dupla, 2:1.
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There are many quadrangle proportions, but I will here set down but seven of

the principallest of them, which shall best serve for the use of a workman.

First, this forme is called a right four cornered quadrate… (Serlio 1982: Bk I,

Ch. I, fols. 11–12).

According to Andrea Palladio, the seven room shapes are: the circle; the square,

1:1; the diagonea,
ffiffiffi

2
p

: 1; the square and a third, 4:3; the square and a half, 3:2; the

square and two-thirds, 5:3; and the double square, 2:1.

There are seven types of room that are the most beautiful and well

proportioned and turn out better: they can be made circular, though these are

rare; or square; or their length will equal the diagonal of the square of the

breadth; or a square and a third; or a square and a half; or a square and two-

thirds; or two squares (Palladio 1997: 53).

Gustav Fechner in 1896 and Charles Lalo in 1908 (Lalo 1908) experimented the

ratios in the area of psychophysics considering user preference (Huntley 1970: 64).

They found ten different ratios used in man-made artifacts that were found to be

preferred by their users. The ratios are 1:1, 5:6, 4:5, 3:4, 7:10, 2:3, 5:8, 13:23, 1:2,

and 2:5 where 5:8 is the approximate natural number ratio of 1:(1 ? H5)/2

(Table 1).

In summary, Table 2 shows the preferred ratios of each of these authors.

Proportionalities

According to Aristotle (1924), the whole is greater than the sum of the parts

(Metaphysics VIII.1045a), and the whole is some aggregate of the parts

(Metaphysics V.1023b). The relationships between the parts and the whole are

treated in mathematics as commensurability. Based upon the notion of ratio (x:y),

the notion of proportion (x:y:z) is developed. The least set of numbers that can

establish a proportion is 3. For three numbers x, y, z, and 0\ x\ y\ z, there are 3

possible outcomes of comparison, 1 unique case of equality, x : y ¼ y : z, which is

called geometric, and 2 cases of inequality, x:y\ y:z and x:y[ y:z. For each case of

inequality, there can be an infinite number of subcases with respect to the actual

numbers involved in the comparison. Among these relationships, some are more

significant than others when commensurability among three ordered terms and their

differences is established when they have equality among their proportional

relationships. For example, when there is the inequality x:y\ y:z, commensurability

among x, y, and z, is not established. However, if (1/z) - (1/y) = (1/y) - (1/x), the

inequality x : y\y : z can be rewritten as an equality, namely, ðz� yÞ=z ¼ ðy�
xÞ=x (March 1998). Then, commensurability is established among x, y, and z in

terms of (z - y), z, (y - x), and x. When the commensurability is achieved among

them, we achieve equilibrium among the parts and the whole.

The inequality cases (x:y\ y:z and x:y[ y:z) were treated by ancient Greek

mathematicians over the centuries (Heath 1921; Nicomachus 1938; March 1998).

With defining the arithmetic and the harmonic mean, Archytas showed the

commensurability among x, y, and z is established in terms of (z - y), (y - x), and
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(z - y), (y - x), z, and x. Eudoxus possibly added one subcontrary case to harmonic

mean, and two subcontrary cases to geometric mean as shown in Table 4.

Nicomachus and Pappus respectively added two distinct sets of 4 means with three

overlapping cases among them. Thus, the total number of means for the inequalities

becomes 10. These 10 means of inequality plus the first initial mean of equality, the

geometric mean, brought the total number of means to 11 (10 ? 1) (Heath 1921:

87). Among these 11 means, only 4 survive in current discourse: the initial 3, the

geometric, arithmetic, and harmonic mean, and Fibonacci with its unique

progression (Table 4).

Table 1 Fechner’s and Lalo’s measurements, after (Huntley 1970: 64)

Ratio

width/length

Best rectangle Worst rectangle

Fechner % Lalo % Fechner % Lalo %

1.0 (1:1) 3.0 11.7 27.8 22.5

0.83 (5/6) 0.2 1.0 19.7 16.6

0.80 (4/5) 2.0 1.3 9.4 9.1

0.75 (3/4) 2.5 9.5 2.5 9.1

0.69 (7/10) 7.7 5.6 1.2 2.5

0.67 (2:3) 20.6 11.0 0.4 0.6

0.62 (5:8) 35.0 30.3 0.0 0.0

0.57 (13:23) 20.0 6.3 0.8 0.6

0.50 (1:2) 7.5 8.0 2.5 12.5

0.40 (2:5) 1.5 15.3 35.7 26.6

100.0 100.0 100.0 100.1

Table 2 Aggregation of referred ratios

Vitruvius Alberti Serlio Palladio Fechner/Lalo

1:1 1:1 1:1 1:1 1:1

%5:6

4:5 4:5

3:4 3:4 3:4 3:4

1 :
ffiffiffi

2
p

1 :
ffiffiffi

2
p

1 :
ffiffiffi

2
p

%7:10

2:3 2:3 2:3 2:3 %2:3

3:5 3:5 3:5 %5:8

9:16 %13:23

1:2 1:2 1:2 1:2 1:2

4:9

2:5

3:8

1:3

1:4
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It is worth noting that only 11 unique cases of proportionality exist among three

ordered terms and their differences. For three real numbers x, y, z, and

0\ x\ y\ z, the number of all possible combinations among x, y, z, and

(z - y), (y - x), (z - x), in terms of the equality of the ratios among them is 27.

Table 3 shows the mathematical representations of the 27 possible cases in terms of

the equalities of the ratios.

Among the 27 possible cases, 6 cases: (10), (13), (16), (19), (22), and (25), are

easily eliminated because they violate the given condition, which is

0\ x\ y\ z. Among the remaining 21 cases, the arithmetic mean arises in three

equivalent ways: (1), (4), and (7), and the geometric mean arises in two equivalent

ways: (2) and (6). This reduces the number of the cases to 16. Among the 16 cases,

only 9 cases satisfy the given condition that we have real numbers x, y, z, and

0\ x\ y\ z. Thus, the total number of the cases to satisfy the condition becomes

Table 3 27 Possible combinations

(1) z�y
y�x

¼ x
x

(8) z�y
y�x

¼ x
z

(15) z�x
y�x

¼ z
y

(22) z�x
z�y

¼ y
y

(2) z�y
y�x

¼ y
x

(9) z�y
y�x

¼ y
z

(16) z�x
y�x

¼ z
z

(23) z�x
z�y

¼ x
y

(3) z�y
y�x

¼ z
x

(10) z�x
y�x

¼ x
x

(17) z�x
y�x

¼ x
z

(24) z�x
z�y

¼ z
y

(4) z�y
y�x

¼ y
y

(11) z�x
y�x

¼ y
x

(18) z�x
y�x

¼ y
z

(25) z�x
z�y

¼ z
z

(5) z�y
y�x

¼ x
y

(12) z�x
y�x

¼ z
x

(19) z�x
z�y

¼ x
x

(26) z�x
z�y

¼ x
z

(6) z�y
y�x

¼ z
y

(13) z�x
y�x

¼ y
y

(20) z�x
z�y

¼ y
x

(27) z�x
z�y

¼ y
z

(7) z�y
y�x

¼ z
z

(14) z�x
y�x

¼ x
y

(21) z�x
z�y

¼ z
x

Table 4 11 proportionalities

Proportionality 1 (arithmetic)

Definition:
z� y

y� x
¼ 1

Proportionality 2 (geometric)

Definition:
z� y

y� x
¼ z

y
or

z� y

y� x
¼ y

x

Proportionality 3 (harmonic)

Definition:
z� y

y� x
¼ z

x

Proportionality 4 (subcontrary to harmonic)

Definition:
z� y

y� x
¼ x

z

Proportionality 5 (subcontrary to geometric)

Definition:
z� y

y� x
¼ x

y

Proportionality 6 (subcontrary to geometric)

Definition:
z� y

y� x
¼ y

z

Proportionality 7

Definition:
z� x

y� x
¼ z

x

Proportionality 8

Definition:
z� x

z� y
¼ z

x

Proportionality 9

Definition:
z� x

y� x
¼ y

x

Proportionality 10 (Fibonacci)

Definition:
z� x

z� y
¼ y

x

Proportionality 11

Definition:
z� x

z� y
¼ z

y

When 0\ x\ y\ z, and x, y, z are real numbers
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11. This proves that the 11 proportionalities discovered by the ancient Greek

mathematicians have remained both universal and unique ways for representing

commensurability and proportional equilibrium among three ordered terms and their

differences. Table 4 shows the 11 proportionalities and their properties (Heath

1921: 87).

Ratios from the Intersections of 11 Proportionalities

In order to observe the characters of the 11 proportionalities, their different patterns

in growth are shown in Fig. 1. When the first term, x, is fixed at 1, the third term, z,

was projected with the increase of the second term y from the first term based upon

the calculation with the definition of each proportionality shown in Table 4.

From the delineation of their different growth patterns, the 15 intersections

among the patterns are observed and identified as shown in Table 5.

Between 1\y�ð1 þ
ffiffiffi

2
p

Þ, y values at the 15 intersections among the 11

proportionalities were calculated with the definition of each proportionality in

Table 4. 1:
ffiffiffi

2
p

and 1:ð1 þ
ffiffiffi

5
p

Þ=2 have multiple intersections at different z values so

that 13 ratios between x and y from the observed 15 cases are finally identified as

shown in Table 6. Between y[ ð1 þ
ffiffiffi

2
p

Þ and y\ 100, no significant intersections

among the 11 proportionalities are observed.

Fig. 1 Growth patterns of the 11 proportionalities
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Comparisons

In Table 7 the preferred ratios of architects and designers given in Table 1 are

compared to the 13 ratios identified from the 15 intersections of the growth patterns

of the 11 proportionalities shown in Fig. 1.

Table 5 15 intersections among the growth patterns of the 11 proportionalities

Intersection number x y z Crossed proportionalities

(1) 1 �1 þ
ffiffiffi

5
p

1þ
ffiffi

5
p

2
Proportionality 3 and 8

(2) 1 %1.3247 1.75488 Proportionality 2 and 8

(3) 1 4
3

2 Proportionality 3 and 11

(4) 1 5�
ffiffi

5
p

2
1þ

ffiffi

5
p

2
Proportionality 4 and 7

(5–1) 1
ffiffiffi

2
p

1 þ
ffiffiffi

2
p

Proportionality 3 and 10

(5–2) 1
ffiffiffi

2
p

2þ
ffiffi

2
p

2
Proportionality 5 and 7

(6) 1 %1.44504 1.80194 Proportionality 6 and 7

(7) 1 3
2

2 Proportionality 1, 7, and 8

(8) 1 %1.54369 1.83929 Proportionality 4 and 9

(9–1) 1 1þ
ffiffi

5
p

2
3þ

ffiffi

5
p

2
Proportionality 2, 7, 10 and 11

(9–2) 1 1þ
ffiffi

5
p

2
2 Proportionality 5 and 9

(10) 1 %1.75488 2.32472 Proportionality 6, 8 and 9

(11) 1 2 3 Proportionality 1, 9 and 10

(12) 1 %2.32472 4.0796 Proportionality 9 and 11

(13) 1 1 þ
ffiffiffi

2
p

2 þ
ffiffiffi

2
p

Proportionality 6 and 10

Table 6 13 ratios from the 15

intersections among the 11

proportionalities

x y

1 �1 þ
ffiffiffi

5
p

1 %1.3247

1 4
3

1 5�
ffiffi

5
p

2

1
ffiffiffi

2
p

1 %1.44504

1 3
2

1 %1.54369

1 1þ
ffiffi

5
p

2

1 %1.75488

1 2

1 %2.32472

1 1 þ
ffiffiffi

2
p
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It is worth noting that the 1:1 ratio between x and y does not satisfy the definition

of proportionality such that 0\ x\ y\ z. Out of the preferred ratios, one ratio

(x:y % 5:6) from Fechner/Lalo, and three ratios (x:y = 3:8, 1:3, 1:4) from Alberti’s

long rooms are not involved with any 13 ratios from the proportionality

intersections. All the other preferred ratios are related to the ratios identified from

the intersections of at least two different proportionalities. Out of the 13 ratios from

the proportionality intersections, four ratios (%1:1.3247; 1:(5 �
ffiffiffi

5
p

)/2;

%1:1.44504; and %1:1.54369) were not linked to any of the preferred ratios.

Discussion

Table 7 shows that certain ratios between x and y provide various ways of

establishing commensurability among three ordered real numbers (0\ x\ y\ z)

and their differences (z - y, y - x, z - x) when z is defined according to the 11

proportionalities. In other words, when x and y have a particular ratio, there is a

higher probability that different proportionalities have the same z. This means that

the particular ratios can provide more ways of representing three ordered numbers

among the dimensions of an object and their differences with the equalities of the

ratios among the ordered numbers. They provide the variety of commensurability

for understanding or appreciating an object. This may hint at a possible underlying

reason as to why certain ratios have been cherished and repeatedly employed in

architecture and design throughout the ages.
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